Correction: Targeting Homologous Recombination in Notch-Driven C. elegans Stem Cell and Human Tumors
نویسندگان
چکیده
Copyright: © 2016 Deng et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
منابع مشابه
Targeting Homologous Recombination in Notch-Driven C. elegans Stem Cell and Human Tumors
Mammalian NOTCH1-4 receptors are all associated with human malignancy, although exact roles remain enigmatic. Here we employ glp-1(ar202), a temperature-sensitive gain-of-function C. elegans NOTCH mutant, to delineate NOTCH-driven tumor responses to radiotherapy. At ≤20°C, glp-1(ar202) is wild-type, whereas at 25°C it forms a germline stem cell⁄progenitor cell tumor reminiscent of human cancer....
متن کاملStem Cells Application in Modeling of Human Genetic Diseases
The use of animal models in modeling of human genetic disease has many advantages. In some cases, however, this method may not be applicable due to some limitations, such as differences in tissue composition, anatomy and physiology of humans and animals. Isogenic human disease models are a population of cells that are selected or engineered to model a specific genetic disease, in vitro. They ar...
متن کاملO-36: Genome Haplotyping and Detection of Meiotic Homologous Recombination Sites in Single Cells, A Generic Method for Preimplantation Genetic Diagnosis
Background: Haplotyping is invaluable not only to identify genetic variants underlying a disease or trait, but also to study evolution and population history as well as meiotic and mitotic recombination processes. Current genome-wide haplotyping methods rely on genomic DNA that is extracted from a large number of cells. Thus far random allele drop out and preferential amplification artifacts of...
متن کاملTargeted, homology-driven gene insertion in stem cells by ZFN-loaded ‘all-in-one’ lentiviral vectors
Biased integration remains a key challenge for gene therapy based on lentiviral vector technologies. Engineering of next-generation lentiviral vectors targeting safe genomic harbors for insertion is therefore of high relevance. In a previous paper (Cai et al., 2014a), we showed the use of integrase-defective lentiviral vectors (IDLVs) as carriers of complete gene repair kits consisting of zinc-...
متن کاملDouble-strand breaks at the target locus stimulate gene targeting in embryonic stem cells.
Double-strand breaks (DSBs) are recombinogenic lesions in chromosomal DNA in yeast, Drosophila and Caenorhabditis elegans. Recent studies in mammalian cells utilizing the I-Scel endonuclease have demonstrated that in some immortalized cell lines DSBs in chromosomal DNA are also recombinogenic. We have now tested embryonic stem (ES) cells, a non-transformed mouse cell line frequently used in gen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 11 شماره
صفحات -
تاریخ انتشار 2016